

TECHNICAL DATA SHEET

SYNOLAC® 5085

Polyester polyol

PRODUCT APPLICATION DETAILS

 ${\sf SYNOLAC}^{\scriptsize \odot}$ 5085 is a solvent-free low viscosity linear saturated polyester (typical average molecular weight 1500).

 ${\sf SYNOLAC}^{\scriptsize \odot}$ 5085 is a very compatible low viscosity modifier designed for blending with other systems.

 ${\sf SYNOLAC}^{\circ}$ 5085 is suitable for use with 2-component acrylic isocyanate or polyester isocyanate systems, high quality stoving systems.

SALES SPECIFICATIONS

	CHARACTERISTICS	METHODS
Viscosity (Brookfield, SC4-21/13R, 47 s-1) (25°C)	800 - 1100 mPa.s	ISO 3219
Color	3 max Gardner	ISO 4630
Acid value	3 max mg KOH/g	ISO 2114

OTHER CHARACTERISTICS¹

	CHARACTERISTICS	METHODS
Density	1.06 g/ml	-
Hydroxyl content	7.6 %	-
Hydroxyl equivalent weight	250	-
Solids content	100 %	-

¹The data provided for these properties are typical values, intended only as guides, and should not be construed as sales specifications

MARKETS

Coatings & Inks

- Industrial Coating
 - Automotive OEM
 - Automotive Refinish
 - General Industry
 - Protective And Marine Coating

PERFORMANCE BENEFITS

- Increase solids content
- Improve flexibility, even at low temperatures
- Improve wetting of pigments and substrates
- Improve adhesion and saltspray resistance
- Improve chemical resistance

SYNOLAC® 5085

FORMULATION GUIDELINES

RECOMMENDATIONS FOR USE

SYNOLAC® 5085 will react into the blended system via its high hydroxyl content, and will not compromise durability.

It is suggested that initial evaluations be carried out using SYNOLAC® 5085 at substituted levels of between 5% and 15% of the main binder.

(a) 2-component systems

When used in combination with other hydroxyl containing resins in 2-component systems, SYNOLAC® 5085 will react with aromatic isocyanates such as Desmodur® L series (1) and aliphatic isocyanates such as Tolonate™ HDB series (2) and Desmodur® N series (1).

SYNOLAC® 5085 can be successfully used (at low levels, 2-3%) in water based systems if it is dispersed into the resin system before neutralisation and addition of water.

Recommended ratios using typical isocyanates would be:

The reaction ratio is calculated from the respective equivalent weight or hydroxyl and isocyanate content of the reactants. The relationship is:

Hydroxyl Equivalent Weight = (17*100) / %OH

Isocyanate Equivalent Weight = (42*100) / %NCO

(b) stoving systems

When used in combination with other resins in stoving systems, SYNOLAC® 5085 will react with most melamine resins, resin solids ratios of between 70:30 and 85:15 binder to amino are suggested.

SOLUBILITY

SYNOLAC® 5085 is soluble in aromatic hydrocarbons, esters and ketones and insoluble in aliphatic hydrocarbons.

COMPATIBILITY

SYNOLAC® 5085 is compatible with many resins including polyesters, acrylics, isocyanates, melamine, urea and alkyd resins.

Notes: (1) Bayer MaterialScience, (2) VENCOR®ex Chemicals

PRODUCT SAFETY

Please refer to the corresponding Safety Data Sheet.

STORAGE AND HANDLING

SYNOLAC® 5085 should be stored indoors in the original, unopened and undamaged container, in a dry place at a temperature not exceeding 30°C. Exposure to direct sunlight should be avoided. In the above mentioned storage conditions the shelf life of the resin will be from the shipping date.

Headquarter: Arkema France 420, rue d'Estienne d'Orves 92705 Colombes Cedex – France T +33 (0)1 49 00 80 80

